YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

COURSE INFORMATON Fundamentals of Nanoscience and Course MSN 502 Course Title Code Nanotechnology Semester Credits ECTS C + P + L Hour Prerequisites 3 1 10 3 + 0 + 0-

Language of Instr	uction	Course Level	Course Type
English		Graduate	Compulsory
Course Coordinator	Dr. Ayşe Dl	JLDA	
Instructors	Dr. Ayşe Dl	JLDA	
Assistants	-		
Goals	nanoscience		
Content	materials- materials.	nano particles- quantum Bottom-up and Top-dow tion, Mechanical Milling, Collo	Classifications of nanostructured dots, nanowires, multilayered n Approach: Co-Precipitation, idal routes, Lithography, CVD and
Contribution of the Course to the Professional Education	Awareness	in the fundamentals of Nanos	cience and Nanotechnology

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Awareness in entrepreneurship and innovation	10 b	1, 2	C,D
Ability to write effective reports	7a	2	C,D
Ability to understand characteristics of materials at nanoscale	10b	1, 2	C, D
Awareness in the preparation of nanomaterials	10b	1, 2	C, D
Ability to make effective presentations,	7c	2	E,G

FACULTY OF ENGINEERING

Teaching Methods:	1: Lecture by instructor, 2: Lecture by instructor with class discussion, 3: Problem solving by instructor, 4: Use of simulations, 5: Problem solving assignment, 6: Reading assignment, 7: Laboratory work, 8: Term research paper, 9: Presentation by guest speaker, 10: Sample Project Review, 11: Interdisciplinary group working, 12:
Assessment Methods:	A: Written exam, B: Multiple-choice exam C: Take-home quiz, D: Experiment report, E: Homework, F: Project, G: Presentation by student, H:

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Fundamentals of Quantum Theory	Textbook			
2	Quantum Size Effect	Textbook			
3	Top down Approach	Textbook			
4	Nanomanufacturing, Lithographic Techniques	Textbook			
5	Bottom up Approach (Liquid Phase Synthesis Methods)	Textbook			
6	Gas Phase Synthesis Methods (CVD)	Textbook			
7	Gas Phase Synthesis Methods (PVD)	Textbook			
8	Nanostructured Materials (1D, 2D, Quantum Dots)	Textbook			
9	Current Applications	Publications			
10	Literature Survey	Publications			
11	Literature Survey	Publications			
12	Literature Survey	Publications			
13	Student Presentations	Publications			
14	Student Presentations	Publications			
15	Student Presentations	Publications			

	RECOMMENDED SOURCES
Lecture Notes	Fundamentals of Nanotechnology (By Gabor L. Hornyak, John J. Moore, H.F. Tibbals, Joydeep Dutta),2018 Introduction to Nano: Basics to Nanoscience and Nanotechnology edited by Amretashis Sengupta, Chandan Kumar Sarkar, 2015
Additional	
Resources	

YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

MATERIAL SHARING	
Documents	
Assignments	
Exams	

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Term Presentations	1	60	
Final Report	1	40	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60	
Total		100	

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES	
No	Program Learning Outcomes	check √
1a	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline,	
1b	Ability to use theoretical and applied knowledge in these areas in complex engineering problems.	
2a	Ability to identify, formulate, and solve complex engineering problems,	
2b	Ability to select and apply proper analysis and modeling methods for this purpose.	
3a	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result,	
Зb	Ability to apply modern design methods for this purpose.	
4a	Ability to devise, select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice.	
4b	Ability to employ information technologies effectively.	
5a	Ability to design experiments for investigating complex engineering problems or discipline specific research questions,	
5b	Ability to conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.	

YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

6a	Ability to work efficiently in intra-disciplinary teams,	
6b	Ability to work efficiently in multi-disciplinary teams,	
6c	Ability to work individually.	\checkmark
7a	Ability to communicate effectively in Turkish, both orally and in writing,	
7b	Knowledge of a minimum of one foreign language,	\checkmark
7c	Ability to write effective reports and comprehend written reports, prepare design and production reports,	\checkmark
7d	Ability to make effective presentations,	\checkmark
7e	Ability to give and receive clear and intelligible instructions.	
8a	Recognition of the need for lifelong learning, ability to access information, ability to follow developments in science and technology,	
8b	Ability to continue to educate him/herself.	
9a	Consciousness to behave according to ethical principles and professional and ethical responsibility.	
9b	Knowledge on standards used in engineering practice.	
10a	Knowledge about business life practices such as project management, risk management, change management.	
10b	Awareness in entrepreneurship and innovation.	\checkmark
10c	Knowledge about sustainable development.	
11a	Knowledge about the global and social effects of engineering practices on health, environment, and safety,	
11b	Knowledge about contemporary issues of the century reflected into the field of engineering.	
11c	Awareness of the legal consequences of engineering solutions.	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course duration (lectures)	14	3	42
Off-the-classroom study (prep., and review)	14	6	84
Presentation	1	3	3
Off-the-classroom study for presentation	1	60	60
Off-the-classroom study for the final report	1	60	60
Total	Work Load		249

Total Work Load / 25 (h)	9,96
ECTS Credit of the Course	10

Prepared by: Dr. Ayşe DULDA

Preparation date: 25.11.2020